Классификация статистических задач и методовКраткое описание: Библиографическая ссылка для цитирования: Сазонов В.Ф. Классификация статистических задач и методов [Электронный ресурс] // Кинезиолог, 2009-2021: [сайт]. Дата обновления: 20.10.2021. URL: https://kineziolog.su/content/klassifikatsiya-statisticheskikh-zadach-i-metodov (дата обращения: __.__.20__). Калькуляторы для статистических расчётов онлайн Одна из лучших книг по статистической обработке данных, написанная понятно для студентов: Сидоренко Е.В. Методы математической обработки в психологии. — СПб.: ООО «Речь», 2003. — 350 с. На данном сайте много раз цитируется эта замечательная книга. 1.8. Классификация задач и методов их решения Множество задач психологического [и любого другого экспериментального] исследования предполагает те или иные сопоставления. Мы сопоставляем группы испытуемых по какому-либо признаку, чтобы выявить различия между ними по этому признаку. Мы сопоставляем то, что было "до" с тем, что стало "после" наших экспериментальных или любых иных воздействий, чтобы определить эффективность этих воздействий. Мы сопоставляем эмпирическое распределение значений признака с каким-либо теоретическим законом распределения или два эмпирических распределения между собой, с тем, чтобы доказать неслучайность выбора альтернатив или различия в форме распределений. Мы, далее, можем сопоставлять два признака, измеренные на одной и той же выборке испытуемых, для того, чтобы установить степень согласованности их изменений, их сопряженность, корреляцию между ними. Наконец, мы можем сопоставлять индивидуальные значения, полученные при разных комбинациях каких-либо существенных условий, с тем чтобы выявить характер взаимодействия этих условий в их влиянии на индивидуальные значения признака. Именно эти задачи позволяет решить тот набор методов, который предлагается настоящим руководством. Все эти методы могут быть использованы при так называемой "ручной" обработке данных. Краткая классификация задач и методов дана в Таблице 1.2. Таблица 1.2 Классификация задач и методов их решения
1.9. Принятие решения о выборе метода математической обработки Если данные уже получены, то вам предлагается следующий алгоритм определения задачи и метода. АЛГОРИТМ 1 Принятие решения о задаче и методе обработки на стадии, когда данные уже получены 1. По первому столбцу Табл. 1.2 определить, какая из задач стоит в вашем исследовании. 2. По второму столбцу Табл. 1.2 определить, каковы условия решения вашей задачи, например, сколько выборок обследовано или на какое количество групп вы можете разделить обследованную выборку. 3. Обратиться к соответствующей главе и по алгоритму принятия решения о выборе критерия, приведенного в конце каждой главы, определить, какой именно метод или критерий вам целесообразно использовать. Если вы еще находитесь на стадии планирования исследования, то лучшее заранее подобрать математическую модель, которую вы будете в дальнейшем использовать. Особенно необходимо планирование в тех случаях, когда в перспективе предполагается использование критериев тенденций или (в еще большей степени) дисперсионного анализа. , В этом случае алгоритм принятия решения таков: АЛГОРИТМ 2 Принятие решения о задаче и методе обработки на стадии планирования исследования 1. Определите, какая модель вам кажется наиболее подходящей для доказательства] ваших научных предположений. 2. Внимательно ознакомьтесь с описанием метода, примерами и задачами для самостоятельного решения, которые к нему прилагаются. 3. Если вы убедились, что это то, что вам нужно, вернитесь к разделу "Ограничения критерия" и решите, сможете ли вы собрать данные, которые будут отвечать этим ограничениям (большие объемы выборок, наличие нескольких выборок, монотонно различающихся по какому-либо признаку, например, по возрасту и т.п.). 4. Проводите исследование, а затем обрабатывайте полученные данные по заранее! выбранному алгоритму, если вам удалось выполнить ограничения. 5. Если ограничения выполнить не удалось, обратитесь к алгоритму 1. В описании каждого критерия сохраняется следующая последовательность изложения:
Кроме того, для каждого критерия создан алгоритм расчетов. Если критерий сразу удобнее рассчитывать по алгоритму, то он приводится в разделе "Пример"; если алгоритм легче можно воспринять уже после рассмотрения примера, то он приводится в конце параграфа, соответствующего данному критерию.
1.10. Список обозначений Латинские обозначения: А - показатель асимметрии распределения с - количество групп или условий измерения d - разность между рангами, частотами или частостями df - число степеней свободы в дисперсионном анализе Е - показатель эксцесса F - критерий Фишера для сравнения дисперсий f - частота f* - частость, или относительная частота G - критерий знаков Н - критерий Крускала-Уоллиса i - индекс, обозначающий порядковый номер наблюдения j - индекс, обозначающий порядковый номер разряда, класса, группы k - количество классов или разрядов признака L - критерий тенденций Пейджа М - среднее значение признака или средняя арифметическая; то же, что и х m - биномиальный критерий n - количество наблюдений (испытуемых, реакций, выборов и т.п.) N - общее количество наблюдений в двух или более выборках Р - вероятность того, что событие произойдет р - вероятность ошибки 1 рода (то же, что и а), уровень статистической значимости Q - 1) вероятность того, что событие не произойдет; 2) критерий Розенбаума rs - коэффициент ранговой корреляции Спирмена S - критерий тенденций Джонкира S2 - оценка дисперсии Si - количество значений, которые выше или ниже данного значения SS - суммы квадратов (в дисперсионном анализе) Т - критерий Вилкоксона Тс - суммы рангов по столбцам Тк - большая сумма рангов в критерии U Wn - размах вариативности, или диапазон значений от наименьшего до наибольшего хi - текущее наблюдение; каждое наблюдение по порядку - среднее значение признака (то же, что и М) Греческие обозначения: α (альфа) - вероятность ошибки I рода (отклонения H0, которая верна) β (бета) - вероятность ошибки II рода (принятия H0, которая неверна) λ, (ламбда) - критерий Колмогорова-Смирнова: вычисление онлайн В обеих выборках д.б. не менее 50 вариант: n1,2 ≥ 50 v (ню) - число степеней свободы в непараметрических критериях σ (сигма) - стандартное отклонение φ (фи) - центральный угол, определяемый по процентной доле в критерии φ* φ* (фи) - критерий Фишера с угловым преобразованием χ2 (хи-квадрат) - критерий Пирсона хи-квадрат χ2r (хи-ар-квадрат) - критерий Фридмана.
Метки: Ваша оценка: |