Пептидная регуляцияКраткое описание: Пептидная регуляция в организме осущестувляется с помощью регуляторных пептидов (РП), состоящих всего из 2-70 аминокислотных остатков в отличие от более длинных белковых цепочек. Существует специальная научная дисциплина - пептидомика - изучающая пулы пептидов в тканях. Пептидная регуляция в организме осущестувляется с помощью регуляторных пептидов (РП), состоящих всего из 2-70 аминокислотных остатков в отличие от более длинных белковых цепочек. Пептидный «фон», присутствующий во всех тканях, традиционно воспринимался раньше просто как «обломки» функциональных белков, но оказалось, что он выполняет важную регуляторную функцию в организме. «Теневые» пептиды формируют глобальную систему биорегуляции (в виде хеморегуляции) и гомеостаза, — возможно, более древнюю, чем эндокринная и нервная системы. В частности, эффекты, оказываемые пептидным «фоном», могут проявляться уже на уровне отдельной клетки, в то время как невозможно себе представить работу нервной или эндокринной системы в одноклеточном организме. Определение понятияПептиды - это гетерополимеры, мономером которых являются остатки аминокислот, соединённые между собой пептидной связью. Пептиды можно образно назвать «младшими братьями» белков, т.к. они состоят из тех же мономеров, что и белки - аминокислот. Но если такая полимерная молекула состоит более чем из 50 аминокислотных остатков — то это белок, а если менее — то пептид. Большинство хорошо известных биологических пептидов (а их не так уж много) являются нейрогормонами и нейрорегуляторами. Основные пептиды с известной функцией в человеческом организме — пептиды тахикининового ряда, вазоактивные интестинальные пептиды, панкреатические пептиды, эндогенные опиоиды, кальцитонин и некоторые другие нейрогормоны. Кроме этого, важную биологическую роль играют антимикробные пептиды, секретируемые как животными, так и растениями (встречаются, например, в семенах или в слизи лягушек), а также антибиотики пептидной природы. Но оказалось, что кроме этих пептидов, обладающих вполне определёнными функциями, ткани живых организмов содержат довольно мощный пептидный «фон», состоящий в основном из фрагментов более крупных функциональных белков, имеющихся в организме. Долгое время поэтому считалось, что такие пептиды — всего лишь «обломки» рабочих молекул, которые организм ещё не успел «подчистить». Однако в последнее время становится понятно, что этот «фон» играет важную роль в поддержании гомеостаза (тканевого биохимического равновесия) и регуляции множества жизненно важных процессов самого общего характера — таких как рост, дифференциация и восстановление клеток. Не исключено даже, что система биорегуляции на основе пептидов — эволюционный «предшественник» более современных эндокринной и нервной систем. Изучением роли пептидных «пулов» стала заниматься специальная научная дисциплина — пептидомика. Молекулярные пулы биомолекул выстраиваются в закономерном порядке. Молекулярные пулы биомолекул Генóм (совокупность генов) → Транскриптóм (совокупность транскриптов, полученных на основе генов путём транскрипции) → Протеóм (совокупность протеинов-белков, полученных на основе транскриптов путём трансляции) → Пептидóм (совокупность пептидов, полученных на основе расщепления белков). Таким образом, пептиды находятся в самом конце молекулярной цепочки информационно взаимосвязанных биомолекул. Рис. 1. Структурная формула молекулы ГМДП. Источник изображения: https://artpharma.ru/d/slayd3.jpg Один из первых активных пептидов был получен из болгарской простокваши, которую в своё время высоко ценил ещё И.И. Мечников. Компонент клеточной стенки бактерий простокваши — глюкозаминил-мурамил-дипептид (ГМДП), — оказывает на организм человека иммуностимулирующее и противоопухолевое действие. Он был открыт при изучении кисломолочной бактерии Lactobacillus bulgaricus (болгарская палочка). Фактически, этот элемент бактерии представляет для иммунной системы как бы «образ врага», мгновенно запускающий каскад поиска и удаления патогена из организма. Кстати, быстрый ответ — неотъемлемое свойство врождённого иммунитета, в отличие от адаптивной реакции, требующей до нескольких недель, чтобы «развернуться» полностью. На основе ГМДП был создан лекарственный препарат ликопид, применяющийся сейчас для широкого спектра показаний, связанных в основном с иммунодефицитами и инфекционными заражениями — сепсисом, перитонитом, синуситами, эндометритами, туберкулёзом, а также при различных видах лучевой и химиотерапии. В начале 1980-х годов стало понятно, что роль пептидов в биологии сильно недооценена — их функции много шире, чем у всем известных нейрогормонов. Прежде всего, обнаружилось, что пептидов в цитоплазме, межклеточной жидкости и тканевых экстрактах много больше, чем считалось до того — как по массе, так и по числу разновидностей. Более того, состав пептидного «пула» (или «фона») в разных тканях и органах существенно отличается, и эти отличия сохраняются у разных особей. Число «свеженайденных» в тканях человека и животных пептидов в десятки раз превышало количество пептидов «классических» с хорошо изученными функциями. Таким образом, разнообразие эндогенных пептидов значительно превосходит известный ранее традиционный набор пептидных гормонов, нейромодуляторов и антибиотиков. Точный состав пептидных пулов определить сложно, — прежде всего, потому, что число «участников» существенным образом будет зависеть от концентрации, которую считать значимой. При работе на уровне единиц и десятых долей наномоля (10−9 М) это несколько сотен пептидов, однако при увеличении чувствительности методик до пикомолей (10−12 М) число зашкаливает за десятки тысяч. Считать ли такие «минорные» компоненты за самостоятельных «игроков», или же принять, что они не имеют собственной биологической роли и представляют лишь биохимический «шум» — вопрос открытый. Довольно хорошо изучен пептидный пул эритроцитов. Установлено, что внутри эритроцитов происходит «нарезание» гемоглобиновых α- и β-цепей на серию крупных фрагментов (всего выделено 37 пептидных фрагментов α-глобина и 15 — β-глобина) и, кроме того, эритроциты выделяют в окружающую среду множество более коротких пептидов. Пептидные пулы образуются и другими культурами клеток (трансформированными миеломоноцитами, клетками эритролейкемии человека и др.), т.е. продукция пептидов культурами клеток — широко распространённый феномен. В большинстве тканей 30–90% всех идентифицированных пептидов являются фрагментами гемоглобина, однако идентифицированы и другие белки, порождающие «каскады» эндогенных пептидов, — альбумин, миелин, иммуноглобулины и др. Для части «теневых» пептидов предшественников пока не найдено. Свойства пептидома 1. Биологические ткани, жидкости и органы содержат большое число пептидов, образующих «пептидные пулы». Эти пулы образуются как из специализированных белков-предшественников, так из белков с иными, своими собственными, функциями (ферментов, структурных и транспортных белков и др.). 2. Состав пептидных пулов устойчиво воспроизводится при нормальных условиях и не обнаруживает индивидуальных отличий. Это значит, что у разных особей их пептидóм мозга, сердца, лёгких, селезёнки и других органов будет примерно совпадать, но между собой эти тканевые пептидные пулы будут достоверно различаться. У разных видов (по крайней мере, среди млекопитающих) состав аналогичных тканевых пулов также весьма схож. 3. При развитии патологических процессов, а также в результате стрессов (в том числе длительного лишения сна) или применения фармакологических препаратов состав пептидных пулов меняется, и иногда довольно сильно. Это может использоваться для диагностики различных патологических состояний, в частности, такие данные есть для болезней Ходжкина и Альцгеймера. Функции пептидома 1. Компоненты пептидóма участвуют в регуляции нервной, иммунной, эндокринной и других систем организма, причём их действие можно рассматривать как комплексное, — то есть, осуществляемое сразу всем ансамблем пептидов. Таким образом, пептидные пулы осуществляют общую биорегуляцию в содружестве с другими системами на уровне всего организма. 2. Пептидный пул в целом регулирует долговременные процессы («долго» для биохимии — это часы, дни и недели), отвечает за поддержание гомеостаза и регулирует пролиферацию, гибель и дифференцировку составляющих ткань клеток. 3. Пептидный пул образует тканевой полифункциональный и полиспецифичный «биохимический буфер», который смягчает метаболические колебания, что позволяет говорить о новой, ранее неизвестной системе регуляции на основе пептидов. Этот механизм дополняет давно известные нервную и эндокринную системы регуляции, поддерживая в организме своеобразный «тканевой гомеостаз» и устанавливая равновесие между ростом, дифференцировкой, восстановлением и гибелью клеток. Таким образом, пептидные пулы осуществляют местную тканевую регуляцию на уровне отдельной ткани. Механизм действия тканевых пептидов Один из главных механизмов действия коротких биологических пептидов — через рецепторы уже известных пептидных нейрогормонов. Сродство «теневых» тканевых пептидов к этим рецепторам очень низкое — в десятки или даже тысячи раз ниже, чем у «основных» специфических биолигандов. Но нужно принимать во внимание тот факт, что концентрация «теневых» пептидов примерно в такое же число раз выше. В результате оказываемый ими эффект может иметь ту же величину, что и для пептидных гормонов, а, учитывая широкий «биологический спектр» пептидного пула, можно сделать вывод об их важности в регуляторных процессах. В качестве примера действия через «не свои» рецепторы можно привести геморфины — фрагменты гемоглобина, которые действуют на опиоидные рецепторы, аналогично «эндогенным опиатам» — энкефалину и эндорфину. Доказывается это стандартным для биохимии способом: добавление налоксона — антагониста опиоидных рецепторов, используемого в качестве антидота при передозировке морфина, героина или других наркотических анальгетиков. Налоксон блокирует действие геморфинов, что и подтверждает их взаимодействие с опиоидными рецепторами. Источник: Неизвестные пептиды: «теневая» система биорегуляции Концепция пептидной регуляции постулирует участие эндогенных пептидов в качестве биорегуляторов в поддержании структурного и функционального гомеостаза клеточных популяций, которые сами содержат и продуцируют эти факторы. Функции регуляторные пептидов
Короткие пептиды, выделенные из различных органов и тканей, а также их синтезированные аналоги (ди-, три_, тетрапептиды) обладают выраженной тканеспецифической активностью в органотипической культуре тканей. Воздействие пептидов приводило к ткнеспецифиеской стимуляции синтеза белка в клетках тех органов, из которых эти пептиды были выделены. Источник: Регуляторные пептиды представляют собой короткие цепочки, включающие от 2 до 50—70 аминокислотных остатков, а более крупные пептидные молекулы принято относить к регуляторным белкам. РП синтезируются во всех органах и тканях организма, но практически все они так или иначе влияют на деятельность ЦНС. Многие РП вырабатываются и нейронами, и клетками периферических тканей. К настоящему времени обнаружено и описано не менее сорока семейств РП, каждое из которых включает от двух до десяти представителей пептидов. Регуляторные пептиды молока Перейти Источник: Ваша оценка:
|