1. Математическая статистика. ВведениеКраткое описание: Понятие математической статистики, её основные разделы. Вычисление "статистик" - это представление "одним числом" сложного стохастического (вероятностного) процесса. Распределение Стьюдента. 1. Математическая статистика. Введение Математическая статистика — это такая дисциплина, которая применяется во всех областях научного знания. Статистические методы предназначены для понимания "численной природы" действительности (Nisbett, et al., 1987). Определение понятия Математическая статистика — это раздел математики, посвященный методам анализа данных, преимущественно вероятностной природы. Она занимается систематизацией, обработкой и использованием статистических данных для теоретических и практических выводов. Статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками. Здесь важно понять, что статистика имеет дело именно с количеством объектов, а не с их описательными признаками. Цель статистического анализа - исследование свойств случайной величины. Для этого приходится несколько раз измерять значения изучаемой случайной величины. Полученная группа значений рассматривается как выборка из гипотетической генеральной совокупности. Производится статистическая обработка выборки, и после этого принимается решение. Важно заметить, что вследствие начального условия неопределённости притятое решение всегда носит характер "нечёткого высказывания". Иными словами, в статистической обработке приходится иметь дело с вероятностями, а не с точными утверждениями. Главное в статистическом методе - это подсчёт числа объектов, входящих в различные группы. Объекты собираются в группу по какому-то определённому общему признаку, а затем рассмотривается распределение этих объектов в группе по количественному выражению данного признака. В статистике часто применяется выборочный метод анализа, т.е. анализируется не вся группа объектов, а небольшая выборка — несколько объектов, взятых из большой группы. Широко используется теория вероятностей при статистической оценке наблюдений и при формировании выводов. Основным предметом математической статистики является вычисление статистик (да простит нас читатель за тавтологию), являющихся критериями для оценки достоверности априорных предположений, гипотез или выводов по существу эмпирических данных. Другое определение - “Статистики – это предписания, по которым из выборки рассчитывается некоторое число – значение статистики для данной выборки” [Закс, 1976]. Выборочные среднее и дисперсия, отношение дисперсий двух выборок или любые другие функции от выборки могут рассматриваться как статистики. Вычисление "статистик" - это представление "одним числом" сложного стохастического (вероятностного) процесса. Распределение Стьюдента Статистики также являются случайными переменными. Распределения статистик (тест-распределения) лежат в основе критериев, которые построены на этой статистике. Например, В. Госсет, работая на пивоварне Гиннеса и публикуясь под псевдонимом “Стьюдент”, в 1908 г. доказал очень полезные свойства распределения отношения разности между выборочным средним и средним значением генеральной совокупности () к стандартной ошибке среднего значения генеральной совокупности , или t –статистики (распределение Стьюдента): . (5.7)
Распределение Стьюдента по форме при некоторых условиях приближается к нормальному. Другими двумя важными распределениями выборочных статистик является c2-распределение и F-распределение, широко используемые в ряде разделов статистики для проверки статистических гипотез. Итак, предмет математической статистики составляет формальная количественная сторона исследуемых объектов, безразличная к специфической природе самих изучаемых объектов. По этой причине в приводимых здесь примерах речь идёт о группах данных, о числах, а не о конкретных измеряемых вещах. И поэтому по образцам расчётов, данных здесь, вы можете рассчитывать свои данные, полученные на самых разных объектах. Главное - подобрать подходящий для ваших данных метод статистической обработки. В зависимости от конкретных результатов наблюдений математическая статистика делится на несколько разделов. Разделы математической статистики
В современной науке считается, что любая область исследований не может быть настоящей наукой до тех пор, пока в неё не проникнет математика. В этом смысле математическая статистика является полномочным представителем математики в любой другой науке и обеспечивает научный подход к исследованиям. Можно сказать, что научный подход начинается там, где в исследовании появляется математическая статистика. Вот почему математическая статистика так важна для любого современного исследователя. Хотите быть настоящим современным исследователем — изучайте и применяйте в своей работе математическую статистику! Статистика с необходимостью появляется там, где происходит переход от единичного наблюдения к множественному. Если у вас имеется множество наблюдений, замеров и данных — то без математической статистики вам не обойтись.
Математическую статистику подразделяют на теоретическую и прикладную. Теоретическая статистика доказывает научность и правильность самой статистики. Теоретическая математическая статистика - наука, изучающая методы раскрытия закономерностей, свойственных большим совокупностям однородных объектов, на основании их выборочного обследования. Этим разделом статистики занимаются математики, и они любят с помощь своих теоретических математических доказательств убеждать нас в том, что статистика сама по себе научна и ей можно доверять. Беда в том, что эти доказательства способны понять только другие математики, а обычным людям, которым нужно пользоваться математической статистикой эти доказательства всё равно не доступны, да и совершенно не нужны! Вывод: Если вы не математик, то не тратьте зря свои силы на понимание теоретических выкладок по поводу математической статистики. Изучайте собственно статистические методы, а не их математические обоснования.
Прикладная статистика учит пользователей работать с любыми данными и получать обобщённые результаты. Неважно, какие именно это данные, важно, какое количество этих данных находится в вашем распоряжении. Кроме того, прикладная статистика подскажет нам, насколько можно верить в то, что полученные результаты отражают действительное положение дел. Для разных дисциплин в прикладной статистике используют различные наборы конкретных методов. Поэтому различают следующие разделы прикладной статистики: биологическая, психологическая, экономическая и другие. Они отличаются друг от друга комплектацией примеров и приемов, а также излюбленными методами вычислений. Можно привести следующий пример различий между применением прикладной статистики для разных дисциплин. Так, статистическое изучение режима турбулентных водных потоков производится на основе теории стационарных случайных процессов. Однако применение той же теории к анализу экономических временных рядов может привести к грубым ошибкам ввиду того, что допущение того, что распределение вероятностей сохраняется неизменным в этом случае, как правило, совершенно неприемлемо. Следовательно, для этих разных дисциплин потребуются разные статистические методы. Итак, математическую статистику должен применять в своих исследованиях любой современный учёный. Даже тот учёный, который работает в направлениях, которые весьма далеки от математики. И он должен уметь применять прикладную статискику к своим данным, даже не зная её. © Сазонов В.Ф., 2009.
Метки: Ваша оценка: |
Комментарии
Да, нормально. Только не ясно
Да, нормально. Только не ясно пока как ей пользоваться (матстатистикой).
Нормально изложено. Всё
Нормально изложено. Всё понятно.
Как пользоваться мат.статистикой
Поймайте на тёмном мозге справа в облаке тегов заголовок "мат.статистика" и кликните на него.
Появится меню по материалам мат.статистики. Там есть использование разных методов. Выбирайте, кликайте и пользуйтесь!