Структура геномаЛекция 17. Структура генома Определение Геном - вся совокупность молекул ДНК клетки (в случае ряда вирусов говорят о геномной РНК). Существует ядерный геном, митохондриальный геном и геном пластид. Мы будем рассматривать только ядерный геном. Соматические клетки содержат диплоидный (2n) геном, половые - гаплоидный (n). Размер генома
Прямой корреляции между количеством ДНК и эволюционной продвинутостью организма нет. Так, например, у малярийного плазмодия 0.06 пг ДНК в ядре, а у амебы 490 пг. Большое количество ДНК не обязательно приносит качественно новую информацию. Амеба пошла на увеличение количества ДНК для увеличения размеров ядра и самой клетки. Генов у нее меньше, чем у плазмодия, но они копированы много раз. У малярийного плазмодия генов больше, чем у амебы, а ДНК меньше для максимальной компактности. Малые размеры ядра и самого одноклеточного организма позволяют ему быть внутриклеточным паразитом. У африканской двоякодышащей рыбы ДНК в 15 раз, а у амебы в 70 раз больше, чем у человека. "Избыточность" эукариотического генома На ~ 106 пар нуклеотидов у бактерий приходится ~5 тыс. генов. На ~109 пар нуклеотидов у млекопитающих ~50 тыс. генов. Минусы "избыточной" ДНК: - увеличение времени синтеза ДНК; - cложнее организовывать удвоение ДНК; - высокая энергоемкость - на 1 нуклеотид для включения в цепь ДНК нужно затратить ~60 молекул АТФ. Неопределенное следствие: - благодаря зависимости размера ядра от количества ДНК происходит увеличение размеров клетки. Плюсы "избыточной" ДНК: - возникает возможность создания сложного регуляторного аппарата, позволяющего поднять организм на более высокий эволюционный уровень. Причины избыточности: 1. Большой размер генов (за счет наличия интронов). 2. Присутствие повторенных последовательностей. Повторяются и гены, и некодирующие участки. У эукариот некоторые последовательности повторены сотни и тысячи раз. 3. Наличие большого числа некодирующих последовательностей, часть из которых выполняет регуляторную функцию при транскрипции, а часть - необходима для компактизации генома. 4. Компактность генома эукариот Компактность - другое принципиальное отличие генома эукариот от прокариотического генома. При средней разнице размеров геномов на 3 порядка, линейные размеры эукариотических хромосом соизмеримы с длиной ДНК прокариот. Выделяют, по крайней мере, 4 уровня компактизации ДНК. При этом нить ДНК "укорачивается" в 10000 раз. Это все равно, что нить, длиной с Останкинскую башню (500 м), уложить в спичечный коробок (5см). Два первых уровня компактизации эукариотического генома обеспечиваются гистонами. Гистоны - основные белки. Все они обогащены лизином и аргинином - положительно заряженными аминокислотами. Выделяют 5 фракций гистонов. Нарабатывается их очень много - 60 млн. молекул каждой фракции на клетку.
Все гистоны, кроме Н1, черезвычайно консервативны в эволюционном отношении (у коровы и клевера разница в Н2А всего в одну аминокислоту!). Следовательно, эти белки выполняют принципиальную функцию, которая у всех эукариот обеспечивается одинаково. Любая мутация в гистоновых генах летальна. Н1 - очень вариабельная фракция. Этот гистон различен не только у видов, но даже у одного организма, в зависимости от стадий онтогенеза. В гистонах лизин и аргинин кластированы. Средняя часть гистона содержит гидрофобные аминокислоты. Положительно заряженные аминокислоты гистонов обеспечивают электростатические взаимодействия с ДНК. Центральная часть необходима для взаимодействия гистонов между собой. 1. Нуклеосомный. ![]() Расположение гистонов не случайно. Каждая молекула представлена дважды. Они образуют кор (серцевину) нуклеосомы. На кор наматывается ДНК - 1.75 левых витка спирали. Определение: нуклеосомой называется повторяющийся структурный элемент хроматина, содержащий гистоновый октамер и ~180 п.н. ДНК. ![]() Нуклеосомный уровень упаковки свойственен всей эукариотической ДНК, он дает укорочение в 7 раз. Диаметр увеличивается с 20 Å до 110 Å. Гистоновые октамеры "скользят" по ДНК. При репликации снимается и этот уровень компактизации. При транскрипции нуклеосомы сохраняются. 2. Супербидный, или соленоидный. Фактически обеспечивается Н1 гистоном. ![]() Н1 взаимодействует с октамерами, сближает их, и еще на него наматывется ДНК. Образуется супербид. Происходит сокращение линейного размера ДНК в 6-10 раз. Диаметр увеличивается до 300Å. Этот уровень компактизации, как и первый, не зависит от первичной структуры ДНК. ![]() Они узнают определенные последовательности ДНК и связываются с ними и друг другом, образуя петли по 20-80 тыс. п.н. Петля обеспечивает экспрессию гена, т.е петля является не только структурным, но и функциональным образованием. Есть участки, в которых нет петель.Укорочение за счет петель проходит в 20-30 раз. Образуются и петлевые домены. Диаметр увеличивается до 700Å. 4. Метафазная хромосома. ![]() Модификации гистонов очень сильно влияют на компактизацию ДНК. Гистоны могут метилироваться, фосфорилироваться (по серину, треонину, тирозину), т.е. аминокислотные остатки легко модифицируются. Кроме того, возможно алкилирование и ацетилирование гистонов. Геном высших эукариот А-Т типа (пары А-Т преобладают), низших эукариот - Г-Ц типа. У человека соотношение (Г+Ц)/(А+Т) = 0.45. У разных типов бактерий диапазон соотношения А-Т пар и Г-Ц пар велик. Чем больше в геноме А-Т пар, тем больше возможностей для изменения вторичной структуры ДНК. При суперспирализации ДНК А-Т богатые участки плавятся в первую очередь. Источники: Дымшиц Г.М. Молекулярная биология: http://www.medliter.ru/?page=get&id=012131 Ваша оценка:
|